20 research outputs found

    New Aerodynamic Studies of an Adaptive Winglet Application on the Regional Jet CRJ700

    Get PDF
    This study aims to evaluates how an adaptive winglet during flight can improve aircraft aerodynamic characteristics of the CRJ700. The aircraft geometry was slightly modified to integrate a one-rotation axis adaptive winglet. Aerodynamic characteristics of the new adaptive design were computed using a validated high-fidelity aerodynamic model developed with the open-source code OpenFoam. The aerodynamic model successively uses the two solvers simpleFoam and rhoSimpleFoam based on Reynold Averaged Navier Stokes equations. Characteristics of the adaptive winglet design were studied for 16 flight conditions, representative of climb and cruise usually considered by the CRJ700. The adaptive winglet can increase the lift-to-drag ratio by up to 6.10% and reduce the drag coefficient by up to 2.65%. This study also compared the aerodynamic polar and pitching moment coefficients variations of the Bombardier CRJ700 equipped with an adaptive versus a fixed winglet

    On the Effect of Flexibility on the Dynamics of a Suspended Payload Carried by a Quadrotor

    No full text
    Unmanned aerial vehicles (UAVs) have been gaining increased importance due to their variety of applications. In some specific tasks, UAVs require the addition of payloads and onboard components, including sensors, which require great stability to provide safe and reliable responses (related to the payload characteristics, such as the temperature, pressure, vibrations and many other factors). In contrast with the suspended payloads carried by a quadrotor aircraft with a rigid attachment, an elastic attachment is designed to assess the influence of the vibration characteristics on the quadrotor and its payload. Since the payload dynamics can alter the flight performance, sensor measurement accuracy and payload integrity, an adapted sliding mode control is used to guide the quadrotor on its desired trajectory and to compensate for the payload dynamics. To reduce the need for position sensors, a reduced-dimension observer is designed to estimate the payload trajectory, as well as the external disturbance behavior. Numerical simulations are performed to demonstrate that the flexibility influences the quadrotor’s dynamics and can create residual oscillation on its payload

    New Aerodynamic Studies of an Adaptive Winglet Application on the Regional Jet CRJ700

    No full text
    This study aims to evaluates how an adaptive winglet during flight can improve aircraft aerodynamic characteristics of the CRJ700. The aircraft geometry was slightly modified to integrate a one-rotation axis adaptive winglet. Aerodynamic characteristics of the new adaptive design were computed using a validated high-fidelity aerodynamic model developed with the open-source code OpenFoam. The aerodynamic model successively uses the two solvers simpleFoam and rhoSimpleFoam based on Reynold Averaged Navier Stokes equations. Characteristics of the adaptive winglet design were studied for 16 flight conditions, representative of climb and cruise usually considered by the CRJ700. The adaptive winglet can increase the lift-to-drag ratio by up to 6.10% and reduce the drag coefficient by up to 2.65%. This study also compared the aerodynamic polar and pitching moment coefficients variations of the Bombardier CRJ700 equipped with an adaptive versus a fixed winglet

    A hybrid fuzzy logic proportional-integral-derivative and conventional on-off controller for morphing wing actuation using shape memory alloy: part 2, controller implementation and validation

    No full text
    The paper presents the numerical and experimental validation of a hybrid actuation control concept - fuzzy logic proportional-integral-derivative (PID) plus conventional on-off - for a new morphing wing mechanism, using smart materials made of shape memory alloy (SMA) as actuators. After a presentation of the hybrid controller architecture that was adopted in the Part 1, this paper focuses on its implementation, simulation and validation. The PID on-off controller was numerically and experimentally implemented using the Matlab/Simulink software. Following preliminary numerical simulations which were conducted to tune the controller, an experimental validation was performed. To implement the controller on the physical model, two programmable switching power supplies (AMREL SPS100-33) and a Quanser Q8 data acquisition card were used. The data acquisition inputs were two signals from linear variable differential transformer potentiometers, indicating the positions of the actuators, and six signals from thermocouples installed on the SMA wires. The acquisition board's output channels were used to control power supplies in order to obtain the desired skin deflections. The experimental validation utilised an experimental bench test in laboratory conditions in the absence of aerodynamic forces, and a wind-tunnel test for different actuation commands. Simultaneously, the optimised aerofoils were experimentally validated with the theoreticallydetermined aerofoils obtained earlier. Both the transition point real time position detection and visualisation were realised in wind tunnel tests.Peer reviewed: YesNRC publication: Ye

    The attack and defense on aircraft trajectory prediction algorithms

    No full text
    The aviation industry needs led to an increase in the number of aircraft in the sky. When the number of flights within an airspace increases, the chance of a mid-air collision increases. Systems such as the Traffic Alert and Collision Avoidance System (TCAS) and Airborne Collision Avoidance System (ACAS) are currently used to alert pilots for potential mid-air collisions. The TCAS and the ACAS use algorithms to perform Aircraft Trajectory Predictions (ATPs) to detect potential conflicts between aircrafts. In this paper, three different aircraft trajectory prediction algorithms named Deep Neural Network (DNN), Random Forest (RF) and Extreme Gradient Boosting were implemented and evaluated in terms of their accuracy and robustness to predict the future aircraft heading. These algorithms were as well evaluated in the case of adversarial samples. Adversarial training is applied as defense method in order to increase the robustness of ATPs algorithms against the adversarial samples. Results showed that, comparing the three algorithm’s performance, the extreme gradient boosting algorithm was the most robust against adversarial samples and adversarial training may benefit the robustness of the algorithms against lower intense adversarial samples. The contributions of this paper concern the evaluation of different aircraft trajectory prediction algorithms, the exploration of the effects of adversarial attacks, and the effect of the defense against adversarial samples with low perturbation compared to no defense mechanism

    Improving the UAS-S4 Ehecatl airfoil high angles-of-attack performance characteristics using a morphing wing approach

    No full text
    In this paper, a morphing wing approach with a new methodology and its results for the high angles-of-attack optimization of the S4 unmanned aerial system airfoil are described. The boundary layer separation delay, coupled with an increase of the maximum lift coefficient, was achieved using an in-house optimization tool based on the artificial bee colony algorithm, coupled with the Broyden–Fletcher–Goldfarb–Shanno algorithm to provide a final refinement. The obtained results were validated with an advanced, multi-objective, commercially available optimizing tool. The aerodynamic calculations were performed using a two-dimensional linear panel method, coupled with an incompressible boundary layer model and a transition estimation criterion. For very small displacements of the airfoil surface, of less than 2.5 mm, lift coefficient increases of up to 18% together with relevant drag reductions have been achieved, successfully delaying separation for the high angles-of-attack range
    corecore